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Abstract— Abstract—Image stitching is the process of 

merging multiple overlapping images into a unified panoramic or 

high-resolution composite. A critical stage in this process is 

feature matching, which significantly impacts the quality and 

accuracy of the final stitched result. This study investigates and 

compares three feature matching strategies: a commonly used 

FLANN-based matcher, a Greedy matcher, and the Kuhn-

Munkres (Hungarian) algorithm. The FLANN matcher offers 

speed and efficiency through approximate nearest neighbor 

search, while the Greedy matcher provides faster performance at 

the cost of global consistency. The Kuhn-Munkres algorithm, 

although computationally more expensive, delivers globally 

optimal one-to-one matches. Experiments on various image 

configurations demonstrate that while the Greedy method is 

fastest, it may produce suboptimal matches. The Kuhn-Munkres 

algorithm, albeit slower, yields the most accurate and consistent 

results, making it suitable for applications where precision is 

critical. This paper highlights the trade-offs between speed and 

accuracy in feature matching, offering insights into selecting the 

appropriate algorithm based on application requirements.  
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I.  INTRODUCTION 

Image stitching or photo stitching is the process of 
combining multiple photographic images with overlapping fi 
elds of view to produce a segmented panorama or high-
resolution image. Commonly performed through the use of 
computer software, most approaches to image stitching require 
nearly exact overlaps between images and identical exposures 
to produce seamless results. It is also known as mosaicing. 
“Stitching” refers to the technique of using a computer to 
merge images together to create a large image, preferably 
without it being at all noticeable that the generated image has 
been created by computer [1].  The goal of image stitching is to 
seamlessly combine multiple overlapping images into a single, 
unified composite. This process typically involves detecting 
salient features in each image, matching corresponding features 
between image pairs, estimating transformations, and blending 
the results to produce a visually coherent output. 

 The image registration process typically consists of five 
main stages: feature detection and description, feature 
matching, outlier rejection, derivation of the transformation 
function, and image reconstruction. Feature detection involves 

identifying salient points (also known as key points or interest 
points) within an image. These points often correspond to 
distinctive structures such as corners, edges, blobs, junctions, 
or line intersections [2]. In the context of image stitching, 
commonly used feature detectors include SIFT, SURF, KAZE, 
AKAZE, ORB, and BRISK. Each of these algorithms is paired 
with its own feature descriptor and presents unique advantages 
and trade-offs in terms of accuracy, computational cost, scale 
invariance, and robustness to illumination or viewpoint 
changes. In this study, the Scale-Invariant Feature Transform 
(SIFT) algorithm is selected due to its proven robustness in 
detecting repeatable key points across varying scales, 
orientations, and lighting conditions, making it highly suitable 
for high-quality image stitching applications.  

A critical step in the image stitching pipeline is feature 
matching, also referred to as keypoint pairing, where key points 
from one image are paired with those from another. This 
pairing process serves as the backbone of the entire image 
stitching task. If key points from image A can be accurately 
matched to those in image B, the images can generally be 
stitched together with high precision. However, this process is 
inherently challenging due to ambiguous correspondences, 
false matches, and non-uniform keypoint distributions, 
particularly in scenes with low texture, repetitive patterns, or 
inconsistent lighting conditions. 

One of the most basic methods for keypoint pairing is 
nearest-neighbor matching, which often uses the brute-force 
algorithm to compare each keypoint descriptor from one image 
to every descriptor in the other. While straightforward, this 
approach becomes computationally expensive as the number of 
key points increases. To improve efficiency, more 
sophisticated yet approximate methods such as k-nearest 
neighbors (KNN) using FLANN-based matchers or KD-tree 
data structures are commonly used. These heuristic-based 
approaches significantly reduce computational time but do not 
guarantee globally optimal pairings between the two sets of 
key points. As a result, they may sacrifice match quality in 
exchange for speed, which can affect the final stitching 
accuracy. 

To address these limitations, this study will introduce two 
methods for feature matching strategy: greedy based feature 
matching, and Kuhn-Munkres (Hungarian) based feature 
matching algorithm. Both of this strategy will have its own 
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trade-off that will be discussed later.  Main purpose of this 
study is to introducing alternative method while also give 
comparative study for each introduced method, while 
comparing the result to commonly used algorithm.  

II. THEORY 

A. Image  

In the digital devices, there are several ways on how an 
image could be stored. First, there is a pixel-based 
representation, and also there is a vector-based representation. 
A pixel-based representation partitions the image into a grid of 
a certain dimension (width × height), and each pixel has one 
value which correspond to the light intensity at that position. 
On the other hand, vector-based representation takes into 
account that an image is composed of primitives such as lines, 
circles, or curves, so that the components of the images is 
specified by those information. One advantage of this 
representation is that when zooming an image, the image could 
be reconstructed using the equations, so that there is no loss of 
sharpness. In the pixel-based representation, however, when 
zooming out the picture the pixel size relative to the image 
stays the same, and to increase sharpness we need to interpolate 
the image, which could not be done automatically and/or easily 
like what the vector-based representation does with the 
equations of the lines and circles. 

In this study, we will be more focused on pixel-based 
representation, since in this study, the focus is placed on pixel-
based representation, as it aligns with the requirements of 
image stitching techniques. Image stitching operates directly on 
raster image data, where operations such as feature detection, 
keypoint matching, and image warping are performed on pixel-
level information extracted from the grid.  

In pixel-based representation, image will be represented as 
2D-Array, where f(x, y) is represent intensity value, commonly 
represented as RGB (Red, Green, Blue) value, within that 
specific spatial coordinate. In RGB color system, there are 
three channels, one for each color red, green, and blue. Each 
channel is an M x N matrix, so in an RGB image, the size of 
the matrix is M x N x 3, i.e. each position has three values for 
each channel. These three values are then used to obtain the 
true colors of the pixel, shown in the figure below. Each value 
can be from 0 to 255 (with data type integer) or norm. Each 
value can be from 0 to 255 (with data type integer) or 
normalized to between 0 to 1 (real-valued). When the 
components of red, green, and blue are all the same, the 
resulting color will be grayscale 

  

Fig 1. RGB Color space 

 

B. Feature and Feature Extraction 

A feature in computer vision is an identifiable part of an 
image or video that conveys meaningful information for tasks 
like object detection, tracking, or classification. Features are 
often distinct patterns, such as edges, corners, textures, or 
specific shapes, that algorithms use to understand and analyze 
visual data. For example, in a photo of a car, features might 
include the edges of the windshield, the corners of the license 
plate, or the texture of the tires. These features help reduce the 
complexity of raw pixel data by focusing on key elements that 
are relevant to solving a problem. By extracting and comparing 
features, algorithms can recognize objects, match images, or 
detect changes across frames in a video.  

The detected features are subsequently described in 
logically different ways on the basis of unique patterns 
possessed by their neighboring pixels. This process is called 
feature description as it describes each feature by assigning it a 
distinctive identity which enables their effective recognition for 
matching. Some featuredetectors are readily available with 
their designated feature description algorithm while others exist 
individually [2].  

In this study, we will more focused on a specific feature 
extraction method called SIFT (Scale Invariant Feature 
Transform). SIFT stands for Scale-Invariant Feature Transform 
and was first presented in 2004, by D. Lowe, University of 
British Columbia. SIFT is invariance to image scale and 
rotation [4]. Compared to other feature extraction process, 
SIFT offer a lot of advantages, including :  

- Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation) 

- Distinctiveness: individual features can be matched to 
a large database of objects 

- Quantity: many features can be generated for even 
small objects 

- Efficiency: close to real-time performance 

- Extensibility: can easily be extended to a wide range of 
different feature types, with each adding robustness 

- Resistance : SIFT is designed to identify and describe 
local features in images that are robust to changes in 
scale, rotation, illumination, and minor affine 
transformations. 

The Scale-Invariant Feature Transform (SIFT) algorithm 
operates through a series of well-defined steps, each 
designed to ensure that the detected key points are 
distinctive, repeatable, and invariant to scale, rotation, and 
illumination changes. The main steps are described as 
follows: 

- Scale-space peak Selection 

One of the fundamental strengths of SIFT is its ability 
to detect features that are invariant to scale. This is 
accomplished by constructing a scale-space 
representation of the image through Gaussian blurring 
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at multiple scales. The Difference-of-Gaussians (DoG) 
is then used to identify local extrema (minima or 
maxima) across spatial and scale dimensions. The 
primary goal of this step is to detect candidate key 
points that may correspond to potential features at 
various scales. 

- Key points Localization 

While the scale-space step generates a large number of 
key points, not all of them are reliable. Some may lie 
along edges or in low-contrast regions, making them 
unstable. This step involves accurately refining the 
location of each keypoint by fitting a 3D quadratic 
function to the DoG response, and discarding those 
that do not meet specific contrast or edge-response 
thresholds. This improves the stability and 
distinctiveness of the remaining key points 

- Orientation Assignment 

To achieve rotation invariance, each keypoint is 
assigned one or more orientations based on the local 
image gradients within a neighborhood around the 
keypoint. The dominant gradient orientation is used to 
align the keypoint descriptor, ensuring that the 
resulting feature vector remains stable even if the 
image is rotated. 

- Keypoint Descriptor 

With location, scale, and orientation assigned, the next 
step is to compute a robust descriptor for each 
keypoint. A window of size 16×16 is taken around the 
keypoint and divided into 4×4 subregions. In each 
subregion, an 8-bin histogram of gradient orientations 
is computed, resulting in a 128-dimensional feature 
vector. This descriptor is designed to be highly 
distinctive and resilient to changes in illumination, 
viewpoint, and minor geometric distortions 

At the end of SIFT process, we will expect result in form of 
set of features or key points, where each key points represented 
by high dimensional vector (128-dimensional vector) and the 
position (spatial coordinate) of the location of each key points.  

 

Fig 2. SIFT Key points Visualization 

 

C. Cosine Similarity 

Cosine similarity is a metric commonly used to measure the 
similarity between two non-zero vectors in a high-dimensional 
space. In the context of computer vision and image processing, 
it is often employed to compare feature descriptors, such as 
SIFT vectors, by assessing their directional alignment rather 
than their absolute magnitudes. Given two vectors A and B, the 
cosine similarity is defined as: 

 

D. Greedy Algorithm 

A greedy algorithm is an algorithm that solves a problem 
step by step in such a way that, at each step: 

1. It selects the best possible choice available at that 
moment, without considering future consequences 
(following the principle of "take what you can get 
now"); 

2. and hopes that by consistently choosing the local 
optimum at each step, it will eventually arrive at a 
global optimum. [3] 

Greedy algorithm is a most popular and simple method for 
solving optimization problems (maximation and minimization 
problems). However, greedy algorithms do not guarantee an 
optimal solution for all problems. Their effectiveness depends 
on whether the problem exhibits the greedy-choice property 
(i.e., a globally optimal solution can be reached by choosing 
local optima) and optimal substructure (i.e., the optimal 
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solution to the problem contains the optimal solution to its 
subproblems). 

In the context of feature matching in computer vision, a 
greedy approach can be used to quickly pair descriptors from 
two sets by always choosing the nearest unmatched feature 
according to a distance metric (e.g., cosine or Euclidean 
distance). While fast, this method may lead to many-to-one 
matches and suboptimal pairings, which can degrade the 
quality of tasks such as image stitching. 

E. Kuhn-Munkres Algorithm 

Kuhn-Munkres Algorithm (Hungarian Algorithm) was 
originally proposed to solve the Optimal Assignment Problem, 
which involves finding a one-to-one mapping (or matching) 
between two sets of elements, typically formulated as nodes in 
a bipartite graph, such that the total cost associated with the 
selected pairings is minimized. Each possible assignment has 
an associated cost, and the goal is to choose a subset of 
assignments that forms a perfect matching with the lowest total 
cost. 

In the context of feature matching for image stitching, the 
Kuhn-Munkres algorithm can be applied by modeling the 
matching process as a bipartite graph, where one set of nodes 
represents the key points from image A and the other set 
represents the key points from image B. The cost matrix is 
constructed based on a distance metric (e.g., cosine distance or 
Euclidean distance) between the feature descriptors of key 
points from both images. Each entry Ci,j in the matrix 
represents the "cost" of matching key point i from image A 
with key point j from image B. 

By applying the Kuhn-Munkres algorithm to this matrix, 
the goal is to find the minimum-cost perfect matching, where 
each keypoint in the smaller set is matched with a unique 
keypoint in the other set. This approach ensures that the overall 
matching is globally optimal, unlike greedy or approximate 
methods which may result in duplicate pairings, missing 
assignments, or suboptimal total cost. Although the algorithm 
has a higher computational complexity, typically O(N3) for an  
NxN matrix, its accuracy and deterministic nature make it well-
suited for applications where precise and reliable feature 
correspondences are essential 

III. METHODOLOGY 

 
Fig 3. Process pipelining 

 
The proposed image stitching pipeline is composed of 

several sequential stages: image preprocessing, feature 
detection, feature matching, homography estimation, and 
image postprocessing. Each stage plays a critical role in 
ensuring accurate alignment and seamless blending between 
input images.  

A. Image Preprocessing 

Before performing feature extraction, input images undergo 
several preprocessing steps to normalize their size and enhance 
consistency: 

• Resizing: Large images are scaled down 
proportionally to ensure that the algorithm remains 
efficient and memory usage is controlled, especially 
when working with high-resolution datasets. 

• Grayscale Conversion: Since SIFT operates on 
intensity gradients rather than color information, each 
image is converted to grayscale, reducing the data 
complexity while retaining the structural features 
necessary for detection. 

These steps help reduce computational cost and improve 
robustness across diverse inputs. 

B. Feature Detection 

 After preprocessing, the algorithm detects distinctive key 
points in each image using the Scale-Invariant Feature 
Transform (SIFT). As we already discussed in previous part, 
SIFT identifies points of interest that are invariant to scale, 
rotation, and illumination changes by constructing a scale-
space and detecting local extrema. Each detected key point is 
then described using a 128-dimensional feature vector, which 
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encodes local gradient information around the point. Main 
purpose of this feature detection and feature extraction is to 
reduce working on all pixels and only focused to meaningful 
one. The number of features will usually be a lot less than 
number of pixels in an image. After this step, other process will 
be centered around this features / key points.  

C. Feature Matching 

In this study, three distinct feature matching methods are 
implemented and compared: the FLANN-based method, a 
greedy-based approach, and the Kuhn-Munkres (Hungarian) 
algorithm. Each method provides a different trade-off between 
computational efficiency and matching accuracy, and their 
effectiveness is evaluated in the context of key point pairing for 
image stitching.  

The FLANN-based matcher (Fast Library for Approximate 
Nearest Neighbors) is widely used due to its efficiency in 
handling high-dimensional descriptor spaces. It utilizes 
approximate nearest neighbor search structures such as KD-
trees or hierarchical clustering trees, making it significantly 
faster than brute-force methods. However, this speed comes at 
the cost of potentially suboptimal matches, as it relies on 
heuristics and may not always return the globally best pairings. 
To improve match quality, the FLANN-based matcher will 
ultilize the k-nearest neighbor (k-NN) search strategy with k = 
2, followed by a ratio test introduced by David Lowe in the 
original SIFT paper. In this study, a ratio threshold of 0.75 is 
used, meaning that for each pair of closest (m, n) the match 
mmm is accepted only if: 

Distance(m) < 0.75*Distance(n) 

The greedy-based matcher operates by selecting, for each 
keypoint in the first image, the closest unmatched keypoint in 
the second image based on a similarity metric (e.g., cosine 
distance). While simple and computationally lightweight, this 
method is also prone to mismatches, especially in cluttered 
scenes or when descriptor distributions are uneven. 

In contrast, the Kuhn-Munkres algorithm (also known as 
the Hungarian algorithm) frames the matching process as a 
bipartite graph assignment problem and seeks a globally 
optimal one-to-one correspondence that minimizes total 
matching cost. Although computationally more intensive, it is 
deterministic and tends to yield higher-quality matches by 
avoiding duplicate assignments and minimizing overall 
matching error. The assignment will rely heavily on cosine 
similarity when comparing cost of the assignment. More 
specifically, a cost matrix is constructed where each element 
represents the cosine distance (1 − cosine similarity) between a 
descriptor in the first image and a descriptor in the second 
image. The Kuhn-Munkres algorithm then solves the linear 
assignment problem on this cost matrix, ensuring that each 
keypoint in one image is matched to a unique keypoint in the 
other, while minimizing the total cost across all assignments. In 
this study, a cosine distance threshold of 0.20 is used to filter 
out poor matches when using the Kuhn-Munkres algorithm. In 
other words, only keypoint pairs with a cosine distance less 
than or equal to 0.20 are considered valid matches, ensuring 
that the resulting assignments reflect a high degree of 

descriptor similarity and reducing the likelihood of false 
correspondences. 

D. Homography Estimation 

Once keypoint correspondences are established using one 

of the matching methods, the next step is to estimate the 

geometric transformation between images. This step will 

follow widely used pipeline : Homography estimation using 

RANSAC (Random Sampling Consencus) Approach. 

RANSAC is particularly well-suited for handling noisy or 

imperfect data, as it robustly estimates the transformation by 

repeatedly selecting random subsets of keypoint matches, 

computing candidate homographies, and evaluating how many 

of the remaining correspondences agree (i.e., lie within a 

certain reprojection threshold). The homography with the 

highest inlier count is selected as the final transformation 

matrix. 

 

 
Fig 4. Homography 

 

 

The expected outcome at the end of the homography 

estimation step is a 3×3 transformation matrix H that defines a 

projective mapping from the coordinate space of one image to 

another. This matrix encapsulates rotation, translation, scaling, 

and perspective distortion, allowing keypoints and features 

from the source image to be aligned accurately with their 

corresponding locations in the destination image. A successful 

homography estimation enables precise image warping, such 

that the overlapping regions between images can be correctly 

aligned and blended, minimizing visible seams and structural 

inconsistencies in the final stitched image. 

 

 

IV. RESULT AND DISCUSSION 

A. Case I –  Horizontal Images Stiching 

Image Input :  
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Method Stitch Result Time 

FLANN 

 

0.62s 

Greedy 

 

0.41s 

KMA 

 

0.73s 

 

 

B. Case II – Vertical Images Stiching 

Image Input :  

 
 

 
 

 
 

Method Stitch Result Time 

FLANN 

 

0.23s 

Greedy 

 

0.22s 

KMA 

 

0.31s 

 

C. Case III – Combination of Horizontal and Vertical  

Image Input :  
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Method Stitch Result Time 

FLANN 

 

1.38 

Greedy 

 

0.96 

KMA 

 

1.69s 

 

V. CONCLUSSION 

The Greedy matching method, while being the fastest, might 

produced faulty or suboptimal results due to its lack of global 

optimization leading to ambiguous or duplicate matches that 

affect homography estimation and the visual quality of the 

stitched images. In contrast, the FLANN-based matcher 

demonstrated consistent performance across most scenarios, 

effectively balancing speed and accuracy, offering a reliable 

trade-off between efficiency and matching quality. On the 

other hand, the Kuhn-Munkres algorithm—though 

computationally the slowest, but as consistent as FLANN, and 

theoretically better than FLANN-based matcher. 
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